Metal–Organic Framework‐Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species |
| |
Authors: | Gang Huang Li Yang Xiao Ma Prof. Dr. Jun Jiang Prof. Dr. Shu‐Hong Yu Prof. Dr. Hai‐Long Jiang |
| |
Affiliation: | Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, P.R. China |
| |
Abstract: | Metal‐free catalysts are of great importance and alternative candidates to conventional metal‐based catalysts for many reactions. Herein, several types of metal–organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN‐224‐templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN‐224‐700) is composed of amorphous carbon coated with well‐defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal‐free catalyst, PCN‐224‐700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4‐nitrophenol to 4‐aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN‐224‐700 catalyst well. |
| |
Keywords: | carbon doping metal-free catalysts metal– organic frameworks porous materials |
|
|