首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetotransport and magnetic properties of sulfospinels Zn x Fe1?x Cr2S4
Authors:Jae Yun Park  Kwang Joo Kim
Institution:(1) Department of Materials Science and Engineering, University of Incheon, Incheon, 402-749, South Korea;(2) Department of Physics, Konkuk University, Seoul, 143-701, South Korea
Abstract:Cr-based chalcogenide spinels, which do not have heterovalency and distortion-induced ions such as manganese oxides with perovskite structure, have demonstrated the existence of colossal magnetoresistance. In order to investigate the magnetotransport phenomena and magnetic properties of sulfospinels Zn x Fe1?x Cr2S4, polycrystalline Zn x Fe1?x Cr2S4 samples were synthesized in the 0?≤?x?≤?0.2 range by a solid reaction method. The crystal structure for x?=?0.05, 0.1, and 0.2 turned out to be cubic at room temperature by X-ray diffraction measurement. In magnetoresistance measurement, Zn x Fe1?x Cr2S4 samples indicate that this system is semiconducting below about 150 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The isomer shift and the electric quadrupole shift of Zn x Fe1?x Cr2S4 samples by Mössbauer experiment show that Fe2+ ions occupy the tetrahedral site in the spinel structure. As the Zn ions are substituted for Fe ions, the Jahn–Teller relaxation slows down and the electric quadrupole shift increases. The magnetotransport phenomena of Zn x Fe1?x Cr2S4 is related to Jahn–Teller effect and half-metallic electronic structure, which are different from the double exchange interactions of the manganite La–Ca–Mn–O system or the triple exchange interactions of sulfospinel Cu x Fe1?x Cr2S4.
Keywords:sulfospinel  magnetotransport  M?ssbauer spectroscopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号