首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Colloidal crystals from surface-tension-assisted self-assembly: a novel matrix for single-molecule experiments
Authors:Yeon Wen Cong  Kannan Balakrishnan  Wohland Thorsten  Ng Vivian
Institution:Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
Abstract:In this work, we develop a new method of creating colloidal crystals with cavities for the entrapment and long-term observation of single biomolecules. Colloidal crystals are first fabricated using surface-tension-assisted self-assembly. Surface tension helps to reduce the interparticle distance between dispensed colloids. Subsequently, the colloids are used as a matrix in which single fluorescently tagged molecules can be tracked using fluorescence microscopy. This method has a high efficiency of self-assembly for small volumes (4 microL) of colloidal suspensions (polystyrene colloids with diameters of 1000, 500, 200, and 100 nm) at low concentration (1% w/w). The spatial hindrance effect on the diffusion of molecules and their entrapment is discussed on the basis of fluorescence correlation spectroscopy results from the diffusion of molecules with different hydrodynamic radii in the cavities of colloidal crystals formed from micrometer- to nanometer-sized polystyrene spheres. Single horseradish peroxidase molecules turning over fluorescent products are tracked over a few seconds. This shows that colloidal crystals can be used to test the function of single molecules of enzymes and protein under controlled spatial confinement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号