首页 | 本学科首页   官方微博 | 高级检索  
     


Physical and mechanical testing of essential oil-embedded cellulose ester films
Affiliation:1. Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria;2. Analytical Chemistry, Nutrition & Food Sciences Department, University of Alicante, P.O. Box 99, E-03080 Alicante, Spain
Abstract:Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (Cybopogon citratus), rosemary pepper (Lippia sidoides) and basil (Ocimum gratissimum) at concentrations of 10 and 20% (v/w). Results obtained showed that, in all films, the addition of the essential oil caused a decrease in the water vapor permeability due to the hydrophobic nature of the oil. The use of 20% of EO caused lower transparency of the films, although the change was not observed visually. Mechanical testing was done on cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate. It was found that incorporation of lemongrass, basil and rosemary pepper EO significantly affected the Young's modulus, tensile strength and elongation at break of the cellulose ester films. The results suggested that the essential oils interacted with the polymers like plasticizers. The results were confirmed with thermal and microscopic studies.
Keywords:Food packaging  Essential oil  Cellulose acetate  Cellulose acetate propionate  Cellulose acetate butyrate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号