首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antiplane elastic wave propagation in pre-stressed periodic structures; tuning,band gap switching and invariance
Institution:School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
Abstract:The effect of nonlinear elastic pre-stress on antiplane elastic wave propagation in a two-dimensional periodic structure is investigated. The medium consists of cylindrical annuli embedded on a periodic square lattice in a uniform host material. An identical inhomogeneous deformation is imposed in each annulus and the theory of small-on-large is used to find the incremental wave equation governing subsequent small-amplitude antiplane waves. The plane-wave-expansion method is employed in order to determine the permissable eigenfrequencies. It is found that pre-stress significantly affects the band gap structure for Mooney–Rivlin and Fung type materials, allowing stop bands to be switched on and off. However, it is also shown that for a specific class of materials, their phononic properties remain invariant under nonlinear deformation, permitting some rather interesting behaviour and leading to the possibility of phononic cloaks.
Keywords:Phononic switch  Configurable  Tunable  Band gaps  Pre-stress  Hyperelastic
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号