首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optical and electrical properties of copper alumina nanoparticles reinforced chlorinated polyethylene composites for optoelectronic devices
Institution:Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut University P.O., Kerala, 673 635, India
Abstract:The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.
Keywords:Chlorinated polyethylene  Copper alumina  Nanocomposites  Optical properties  Thermal stability  Temperature dependent conductivity  Dielectric parameters  Modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号