首页 | 本学科首页   官方微博 | 高级检索  
     


Proton-induced luminescence of mono- and dinuclear rhenium(I) tricarbonyl complexes containing 4-pyridinealdazine
Authors:Cattaneo Mauricio  Fagalde Florencia  Katz Néstor E
Affiliation:Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucuman, Ayacucho 491, T4000INI San Miguel de Tucumán, Argentina.
Abstract:New mono- and dinuclear rhenium(I) tricarbonyls, of formulas [Re(bpy)(CO)3(PCA)]+ (1), [(bpy)(CO)3Re(I)(PCA)Re(I)(CO)3(bpy)]2+ (2), and [(bpy)(CO)3Re(I)(PCA)Ru(II)(NH3)5]3+ (3) (bpy = 2,2'-bipyridine, PCA = 4-pyridinecarboxaldehydeazine), have been synthesized as PF6- salts and characterized by spectroscopic, electrochemical, and photophysical techniques. These species do not emit at room temperature in CH(3)CN; however, in aqueous solutions, a decrease in pH induces luminescence in all of them, due to protonation of one of the N atoms of the -C=N-N=C- chain of PCA, as indicated by the pKa values of the ground states, obtained by absorption measurements, which are ca. 3 orders of magnitude lower than the pKa value of the pyridine N of PCA in complex 1. On the other hand, the values of pKa* of the excited states, obtained by emission measurements, of complexes 1 and 2 are similar (pKa* = 2.7 +/- 0.1 at I = 0.1 M) and higher than those of the corresponding ground states. At low values of pH, chemical decomposition takes place rapidly in complex 3, but not in 1 and 2, supporting the possible use of these latter species as luminescent sensors of pH. The heterodinuclear complex, of formula [(bpy)(CO)3Re(I)(PCA)Ru(III)(NH3)5]4+, was obtained by bromine oxidation of the [Re(I), Ru(II)] precursor in CH3CN solution; from spectral and electrochemical measurements, the recombination charge-transfer reaction [Re(II), Ru(II) ] --> [Re(I), Ru(III)], which occurs after photoexcitation, is predicted to lie in the Marcus inverted region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号