首页 | 本学科首页   官方微博 | 高级检索  
     


An Effective Field Theory Model to Describe Nuclear Matter in Heavy-Ion Collisions
Authors:M. M. Islam  H. Weigel
Affiliation:(1) Department of Physics, University of Connecticut, Storrs, Connecticut, 06268;(2) Center for Theoretical Physics, Laboratory of Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
Abstract:Relativistic mean field theory with mesons sgr, ohgr, pgr and rgr mediating interactions and nucleons as basic fermions has been very successful in describing nuclear matter and finite nuclei. However, in heavy-ion collisions, where the c. m. energy of two colliding nucleons will be in the hundreds of GeV region, nucleons are not expected to behave as point-like particles. Analyses of elastic pp and ¯pp scattering data in the relevant c. m. energy range show that the nucleon is a composite object—a topological soliton or Skyrmion embedded in a condensed quark-antiquark ground state. Against this backdrop, we formulate an effective field theory model of nuclear matter based on the gauged linear sgr-model where quarks are the basic fermions, but the mesons still mediate the interactions. The model describes the nucleon as a Skyrmion and produces a q¯q ground state analogous to a superconducting ground state. Quarks are quasi-particles in this ground state. When the temperature exceeds a critical value, the scalar field in the ground state vanishes, quarks become massless, and a chiral phase transition occurs leading to chiral symmetry restoration. We explore the possibility of a first order phase transition in this model by introducing suitable self-interactions of the scalar field. Internal structures of the Skyrmions are ignored, and they are treated as point-like fermions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号