首页 | 本学科首页   官方微博 | 高级检索  
     


The role of hydrogen bonds in Baeyer-Villiger reactions
Authors:Yamabe Shinichi  Yamazaki Shoko
Affiliation:Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan. yamabes@nara-edu.ac.jp
Abstract:Various Baeyer-Villiger (B-V) oxidation reactions were examined by density functional theory calculations. Proton movements in transition states (TSs) of the two key steps, the nucleophilic addition of a peroxyacid molecule to a ketone (TS1) and the migration-cleavage of O-O (TS3), were discussed. A new TS of a hydrogen-bond rearrangement in the Criegee intermediate (TS2) was found. The hydrogen-bond directionality requires a trimer of the peroxyacid molecules at the nucleophilic addition of a peroxyacid molecule to a ketone TS (TS1). At the migration-cleavage of O-O TS (TS3), also three peroxyacid molecules are needed. Elementary processes of the B-V reaction were determined by the use of the (acetone and (H-CO-OOH)n, n=3) system. The geometries of the nucleophilic addition of a peroxyacid molecule to a ketone TS (TS1) and the migration-cleavage of O-O TS (TS3) in the trimer (n=3) participating are nearly insensitive to the substituent on the peroxyacid. The directionality is satisfied in those geometries. The migration-cleavage of O-O TS (TS3) was found to be rate-determining in reactions, [Me2C=O+(H-CO-OOH)3], [Me2C=O+(F3C-CO-OOH)3], and [Me2C=O+(MCPBA)3]. In contrast, the nucleophilic addition of a peroxyacid molecule to a ketone (TS1) is rate-determining in the reaction, [Ph(Me)C=O+(H-CO-OOH)3].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号