首页 | 本学科首页   官方微博 | 高级检索  
     


Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project
Authors:Frank R. Graziani  Victor S. Batista  Lorin X. Benedict  John I. Castor  Hui Chen  Sophia N. Chen  Chris A. Fichtl  James N. Glosli  Paul E. Grabowski  Alexander T. Graf  Stefan P. Hau-Riege  Andrew U. Hazi  Saad A. Khairallah  Liam Krauss  A. Bruce Langdon  Richard A. London  Andreas Markmann  Michael S. Murillo  David F. Richards  Howard A. Scott  Heather D. Whitley
Affiliation:1. Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;2. Computational Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;3. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA;4. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260-8709, USA
Abstract:We describe the status of a new time-dependent simulation capability for dense plasmas. The backbone of this multi-institutional effort – the Cimarron Project – is the massively parallel molecular dynamics (MD) code “ddcMD,” developed at Lawrence Livermore National Laboratory. The project’s focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low-Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This paper summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision, describes two new experimental efforts that play a central role in our validation work, highlights some significant results obtained to date, outlines concepts now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas, and provides a careful comparison of quantum effects on electron trajectories predicted by more elaborate dynamical methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号