首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide
Authors:Razkin Jesus  Nilsson Helena  Baltzer Lars
Institution:Department of Applied Chemistry, Public University of Navarra, 31006 Pamplona, Navarra, Spain. jrazk@unavarra.es
Abstract:A 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle has been designed to catalyze the hydrolysis of phosphodiesters. The active site on the surface of the folded catalyst is composed of two histidine and four arginine residues, with the capacity to provide general acid, general base, and/or nucleophilic catalysis as well as transition state stabilization. Uridine 3'-2,2,2 trichloroethylphosphate (2) is a mimic of RNA with a leaving group pKa of 12.3. Its hydrolysis is energetically less favorable than that of commonly used model substrates with p-nitrophenyl leaving groups and therefore a more realistic model for the design of catalysts capable of cleaving RNA. The second-order rate constant for the hydrolysis of 2 at pH 7.0 by the polypeptide catalyst was 418 x 10(-6) M-1 s-1, and that of the imidazole catalyzed reaction was 1.66 x 10(-6) M-1 s-1. The pH dependence suggested that catalysis is due to the unprotonated form of a residue with a pKa of around 5.3, and the observed kinetic solvent isotope effect of 1.9 showed that there is significant hydrogen bonding in the transition state, consistent with general acid-base catalysis. The rate constant ratio k2(Pep)/k2(Im) of 252 is probably due to a combination of nucleophilic and general acid-base catalysis, as well as transition state stabilization. Substrate binding was weak since no sign of saturation kinetics was observed for substrate concentrations in the range from 5 to 40 mM. The results provide a platform for the further development of catalysts for RNA cleavage with a potential role in the development of drugs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号