首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism and Selectivity of RuII‐ and RhIII‐Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C−H Activation/Dearomatization Strategy
Authors:Mei Zhang  Prof?Dr Genping Huang
Institution:1. http://genpinghuang.weebly.com;2. Department of Chemistry, School of Science, Tianjin University, Tianjin, P.R. China;3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, P.R. China
Abstract:The ruthenium‐ and rhodium‐catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O?H deprotonation/C(sp2)?H bond cleavage through a concerted metalation–deprotonation mechanism/migratory insertion of the alkyne into the M?C bond to deliver the eight‐membered metallacycle. However, the dearomatization through the originally proposed enol–keto tautomerization/C?C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight‐membered metallacycle through rotation of the C?C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C?C coupling between the carbene carbon atom and the carbon atom of the 2‐naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal 5+2] cycloaddition in the rhodium‐catalyzed oxidative annulation of 2‐vinylphenols with alkynes. The calculations show that compared with the case of 2‐alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal 5+2] cycloaddition.
Keywords:density functional calculations  metallacyclopropene  oxidative spiroannulation  reaction mechanisms  selectivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号