首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoluminescence and conductivity of self-assembled pi-pi stacks of perylene bisimide dyes
Authors:Chen Zhijian  Stepanenko Vladimir  Dehm Volker  Prins Paulette  Siebbeles Laurens D A  Seibt Joachim  Marquetand Philipp  Engel Volker  Würthner Frank
Institution:Universit?t Würzburg, Institut für Organische Chemie and R?ntgen Research Center for Complex Material Systems, Am Hubland, 97074 Würzburg, Germany.
Abstract:The self-assembly of a new, highly fluorescent perylene bisimide dye 2 into pi stacks, both in solution and condensed phase, has been studied in detail by NMR spectroscopy, vapor pressure osmometry (VPO), UV/Vis and fluorescence spectroscopy, differential scanning calorimetry (DSC), optical polarizing microscopy (OPM) and X-ray diffraction. The NMR and VPO measurements revealed the formation of extended pi-pi stacks of the dye molecules in solution. The aggregate size determined from VPO and DOSY NMR measurements agree well with that obtained from the concentration and temperature-dependent UV/Vis spectral data by employing the isodesmic model (equal K model). In the condensed state, dye 2 possesses a hexagonal columnar liquid crystalline (LC) phase as confirmed by X-ray diffraction analysis. The columnar stacking of this dye has been further explored by atomic force microscopy (AFM). Well-resolved columnar nanostructures of the compound are observed on graphite surface. A color-tunable luminescence from green to red has been observed upon aggregation which is accompanied by an increase of the fluorescence lifetime and depolarization. The observed absorption properties can be explained in terms of molecular exciton theory. The charge transport properties of dye 2 have been investigated by pulse radiolysis-time resolved microwave conductivity measurements and a 1D charge carrier mobility up to 0.42 cm(2) V(-1) s(-1) is obtained. Considering the promising self-assembly, semiconducting, and luminescence properties of this dye, it might serve as a useful functional material for nano(opto)electronics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号