首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection and characterization of intermolecular multiple-quantum coherence NMR signals of IS (I=1/2; S=3/2) spin systems
Authors:Zhang Wen  Chen Song  Cai Shuhui  Chen Zhong
Institution:Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China.
Abstract:Intermolecular multiple-quantum coherences (iMQCs) have some intrinsic properties different from conventional single-quantum coherences in solution NMR. In this paper, we extended our study to heteronuclear iMQCs in IS (I=1/2, S=3/2) spin systems. A sample of sodium chloride (NaCl) water solution was taken as an example. Heteronuclear COSY revamped by asymmetric Z-gradient echo detection (CRAZED) experiments were performed. One- and two-dimensional heteronuclear iMQC spectra were obtained. The quantum-mechanical treatment was used to deduce the signal expressions. Magic angle experiments validate that the signals are indeed from intermolecular dipolar interaction and insensitive to the imperfection of radio-frequency (RF) flip angles. Both experimental results and theoretical analysis indicate that heteronuclear CRAZED experiment allows coherence transfer from spin-3/2 nuclei to spin-1/2, and vice verse. Furthermore, the dependences of iMQC signal intensities on RF pulse flip angles follow the same rules as those for heteronuclear IS (I=1/2, S=1/2 or 1) spin systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号