首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Turbulent scalar flux transport in head-on quenching of turbulent premixed flames: a direct numerical simulations approach to assess models for Reynolds averaged Navier Stokes simulations
Authors:Jiawei Lai  Dana Alwazzan
Institution:School of Mechanical and Systems Engineering, University of Newcastle, Newcastle, UK
Abstract:The statistical behaviour and the modelling of turbulent scalar flux transport have been analysed using a direct numerical simulation (DNS) database of head-on quenching of statistically planar turbulent premixed flames by an isothermal wall. A range of different values of Damköhler, Karlovitz numbers and Lewis numbers has been considered for this analysis. The magnitudes of the turbulent transport and mean velocity gradient terms in the turbulent scalar flux transport equation remain small in comparison to the pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation when the flame is away from the wall but the magnitudes of all these terms diminish and assume comparable values during flame quenching before vanishing altogether. It has been found that the existing models for the turbulent transport, pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation do not adequately address the respective behaviours extracted from DNS data in the near-wall region during flame quenching. Existing models for transport equation-based closures of turbulent scalar flux have been modified in such a manner that these models provide satisfactory prediction both near to and away from the wall.
Keywords:Turbulent scalar flux  turbulent Reynolds number  Damköhler number  Karlovitz number  Reynolds Averaged Navier Stokes simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号