首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Eigenschaften der Lösungen der nichtlinearisierten Ginsburg-Landau-Gleichungen in Zylindersymmetrie
Authors:Robert Doll  Peter Graf
Institution:1. Kommission für Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften zu München, Deutschland
Abstract:Solutions of the nonlinear Ginzburg-Landau equations in cylindrical symmetry have been computed for a type I superconductor. From these solutions the behaviour of a circular cylinder of infinite length in a magnetic field parallel to its axis has been deduced. For a series of values of the magnetic field solutions are given in two cases. The first case was calculated with the assumption of no fluxoid frozen in (fluxoid quantum number n=0), whereas in the second case a vortex with fluxoid quantum numbern=1 was assumed on the axis of the cylinder. For both series of solutions investigation of the thermodynamic stability was carried out. This and further thermodynamic considerations led to the result that in a gedankenexperiment the transition from the normal to the superconducting state and vice versa can be performed in a reversible manner. The expulsion of the magnetic field from the sample during the reversible transition to the superconducting state (Meissner-Effect) is also described by the solutions. Further results are the existence of a supercooled state down to a magnetic fieldH c2=κ√2Hcb and of a superheated state up to a fieldH c1>H cb. The value ofH c1 depends on the radius of the cylinder. If a condensation to the superconducting state takes place at a fieldH 0 whereH c2<H 0<H cb, condensation withn=0 seems to be preferred in comparison to that withn=1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号