首页 | 本学科首页   官方微博 | 高级检索  
     


Bifurcation phenomena in viscoelastic flows through a symmetric 1:4 expansion
Authors:Gerardo N. Rocha  Robert J. Poole  Paulo J. Oliveira
Affiliation:1. Unidade Materiais Têxteis e Papeleiros, Departamento de Engenharia Electromecânica, Universidade da Beira Interior, 6201-001 Covilhã, Portugal;2. Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK
Abstract:In this work we present an investigation of viscoelastic flow in a planar sudden expansion with expansion ratio D/d = 4. We apply the modified FENE–CR constitutive model based on the non-linear finite extensibility dumbbells (FENE) model. The governing equations were solved using a finite volume method with the high-resolution CUBISTA scheme utilised for the discretisation of the convective terms in the stress and momentum equations. Our interest here is to investigate two-dimensional steady-state solutions where, above a critical Reynolds number, stable asymmetric flow states are known to occur. We report a systematic parametric investigation, clarifying the roles of Reynolds number (0.01 < Re < 100), Weissenberg number (0 < We < 100) and the solvent viscosity ratio (0.3 < β < 1). For most simulations the extensibility parameter of the FENE model was kept constant, at a value L2 = 100, but some exploration of its effect in the range 100–500 shows a rather minor influence. The results given comprise flow patterns, streamlines and vortex sizes and intensities, and pressure and velocity distributions along the centreline (i.e. y = 0). For the Newtonian case, in agreement with previous studies, a bifurcation to asymmetric flow was observed for Reynolds numbers greater than about 36. In contrast viscoelasticity was found to stabilise the flow; setting β = 0.5 and We = 2 as typical values, resulted in symmetric flow up to a Reynolds number of about 46. We analyse these two cases in particular detail.
Keywords:Planar symmetric expansion   Asymmetric flow   Viscoelastic fluid   FENE&ndash  CR model   FENE&ndash  MCR model   Finite volume method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号