首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Action spectrum and quantum yield for the photoinactivation of mnemiopsin, a bioluminescent photoprotein from the Ctenophore mnemiopsis SP.
Authors:W W Ward  H H Seliger
Abstract:Abstract— Ctenophores are bioluminescent marine invertebrates closely related to the coelenterates. The isolated bioluminescent systems of the ctenophores Mnemiopsis and Beroë and the hydrozoan jellyfish Aequorea are protein-luciferin complexes (photoproteins) which flash upon the addition of Ca2+ ions. The photoprotein mnemiopsin has an oxygen-independent quantum yield for photoinactivation of bioluminescence as high as 0.5, placing it among the most light-sensitive proteins known. We have measured the action spectrum for this photoinactivation at 107 narrow (3.4 nm) wavelength bands between 230 nm and 570 nm, covering a range of four decade units in the action. The action spectrum in the visible region is identical with the absorption spectrum of native photoprotein, implicating bound luciferin. The UV action spectrum implies that absorption by aromatic amino acid residues also leads to extremely efficient photoinactivation. Although photoinactivation is a rapid first-order reaction, destruction of the luciferin is a slower, multiple-order process. Therefore, protein-bound luciferin is not the ultimate target of the photoinactivation. Absorption of light results in the dissociation of “active oxygen” from the photoprotein. Therefore, the ctenophore photoprotein is a precharged enzyme already containing bound luciferin and oxygen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号