Abstract: | Starting with Kirkwood's Fokker–Planck equation for the polymer configuration-space distribution function and using the Zwanzig–Mori projection operator technique we have calculated the scattering law S(q,w) for a freely jointed model polymer chain in a dilute solution. When memory effects are neglected, the theory predicts a Lorentzian for S(q,w) with a halfwidth Ω(q), which we have determined as a function of the momentum transfer q for all values of q. The results are compared with recent neutron scattering experiments on deuterated polytetrahydrofuran and polystyrene in dilute solution in CS2. It is found that the observed q dependence of Ω(q) is represented satisfactorily by the present theory with a bond length b of about 6.3 Å for polystyrene and 3.8 Å for polytetrahydrofuran, and a friction coefficient ζ = 4πη0b where η0 is the viscosity of the solvent. |