首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Purification and Kinetic Properties of Human Recombinant Dihydrofolate Reductase Produced in <Emphasis Type="Italic">Bombyx mori</Emphasis> Chrysalides
Authors:Soledad Chazarra  Salvador Aznar-Cervantes  Luis Sánchez-del-Campo  Juan Cabezas-Herrera  Wu Xiaofeng  José Luis Cenis  José Neptuno Rodríguez-López
Institution:(1) Bioprodin, S.L. Edificio CEEIM, Campus Universitario de Espinardo, Murcia, Spain;(2) IMIDA, La Alberca, Murcia, Spain;(3) Department of Biochemistry and Molecular Biology A, School of Biology, University of Murcia, Espinardo, Murcia, Spain;(4) Research Unit of Clinical Analysis Service, University Hospital Virgen de la Arrixaca, Murcia, Spain;(5) Collegue of Animal Sciences, Zhejiang University, Huajiachi Campus, Hangzhou, China;
Abstract:Recent reports describe the inhibition of human dihydrofolate reductase (hDHFR) by natural tea polyphenols. This finding could explain the epidemiologic data on their prophylactic effects for certain forms of cancer, and it raises the possibility that natural and synthetic polyphenols could be used in cancer chemotherapy. In order to obtain larger quantities of hDHFR to support structural studies, we established and validated a baculovirus system for the expression of this protein in Bombyx mori chrysalides (pupae of the silkworm enclosed in a cocoon). To isolate the expressed protein, whole infected pupae were homogenized, and the expressed protein was purified by affinity chromatography. Here, we demonstrate the efficient expression of recombinant hDHFR in this model and report that this newly expressed protein has high enzymatic activity and kinetic properties similar to those previously reported for recombinant hDHFR expressed in Escherichia coli. The purified protein showed dissociation constants for the binding of natural polyphenols similar to that expressed in E. coli, which ensures its usage as a new tool for further structural studies. Although the hDHFR yield per individual was found to be lower in the chrysalides than in the larvae of B. mori, the former system was optimized as a model for the scaled-up production of recombinant proteins. Expression of proteins in chrysalides (instead of larvae) could offer important advantages from both economic and biosecurity aspects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号