首页 | 本学科首页   官方微博 | 高级检索  
     


Simple and Efficient Ruthenium‐Catalyzed Oxidation of Primary Alcohols with Molecular Oxygen
Authors:Ritwika Ray  Shubhadeep Chandra  Prof. Debabrata Maiti  Prof. Goutam Kumar Lahiri
Affiliation:Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
Abstract:Oxidative transformations utilizing molecular oxygen (O2) as the stoichiometric oxidant are of paramount importance in organic synthesis from ecological and economical perspectives. Alcohol oxidation reactions that employ O2 are scarce in homogeneous catalysis and the efficacy of such systems has been constrained by limited substrate scope (most involve secondary alcohol oxidation) or practical factors, such as the need for an excess of base or an additive. Catalytic systems employing O2 as the “primary” oxidant, in the absence of any additive, are rare. A solution to this longstanding issue is offered by the development of an efficient ruthenium‐catalyzed oxidation protocol, which enables smooth oxidation of a wide variety of primary, as well as secondary benzylic, allylic, heterocyclic, and aliphatic, alcohols with molecular oxygen as the primary oxidant and without any base or hydrogen‐ or electron‐transfer agents. Most importantly, a high degree of selectivity during alcohol oxidation has been predicted for complex settings. Preliminary mechanistic studies including 18O labeling established the in situ formation of an oxo–ruthenium intermediate as the active catalytic species in the cycle and involvement of a two‐electron hydride transfer in the rate‐limiting step.
Keywords:alcohols  aldehydes  oxidation  reaction mechanisms  ruthenium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号