首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of Producing Metallic Nanoparticles,with an Emphasis on Silver and Gold Nanoparticles,Using Bottom-Up Methods
Authors:Basil Raju Karimadom  Haya Kornweitz
Affiliation:Chemical Sciences Department, Ariel University, Ariel 4077625, Israel;
Abstract:Bottom-up nanoparticle (NP) formation is assumed to begin with the reduction of the precursor metallic ions to form zero-valent atoms. Studies in which this assumption was made are reviewed. The standard reduction potential for the formation of aqueous metallic atoms—E0(Mn+aq/M0aq)—is significantly lower than the usual standard reduction potential for reducing metallic ions Mn+ in aqueous solution to a metal in solid state. E0(Mn+aq/M0solid). E0(Mn+aq/M0aq) values are negative for many typical metals, including Ag and Au, for which E0(Mn+aq/M0solid) is positive. Therefore, many common moderate reduction agents that do not have significantly high negative reduction standard potentials (e.g., hydrogen, carbon monoxide, citrate, hydroxylamine, formaldehyde, ascorbate, squartic acid, and BH4), and cannot reduce the metallic cations to zero-valent atoms, indicating that the mechanism of NP production should be reconsidered. Both AgNP and AuNP formations were found to be multi-step processes that begin with the formation of clusters constructed from a skeleton of M+-M+ (M = Ag or Au) bonds that is followed by the reduction of a cation M+ in the cluster to M0, to form Mn0 via the formation of NPs. The plausibility of M+-M+ formation is reviewed. Studies that suggest a revised mechanism for the formation of AgNPs and AuNPs are also reviewed.
Keywords:nanoparticles   silver nanoparticles   gold nanoparticles   DFT   standard reduction potentials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号