首页 | 本学科首页   官方微博 | 高级检索  
     


Femtosecond time-resolved electronic sum-frequency generation spectroscopy: a new method to investigate ultrafast dynamics at liquid interfaces
Authors:Sekiguchi Kentaro  Yamaguchi Shoichi  Tahara Tahei
Affiliation:Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan.
Abstract:We developed a new surface-selective time-resolved nonlinear spectroscopy, femtosecond time-resolved electronic sum-frequency generation (TR-ESFG) spectroscopy, to investigate ultrafast dynamics of molecules at liquid interfaces. Its advantage over conventional time-resolved second harmonic generation spectroscopy is that it can provide spectral information, which is realized by the multiplex detection of the transient electronic sum-frequency signal using a broadband white light continuum and a multichannel detector. We studied the photochemical dynamics of rhodamine 800 (R800) at the air/water interface with the TR-ESFG spectroscopy, and discussed the ultrafast dynamics of the molecule as thoroughly as we do for the bulk molecules with conventional transient absorption spectroscopy. We found that the relaxation dynamics of photoexcited R800 at the air/water interface exhibited three characteristic time constants of 0.32 ps, 6.4 ps, and 0.85 ns. The 0.32 ps time constant was ascribed to the lifetime of dimeric R800 in the lowest excited singlet (S(1)) state (S(1) dimer) that is directly generated by photoexcitation. The S(1) dimer dissociates to a monomer in the S(1) state (S(1) monomer) and a monomer in the ground state with this time constant. This lifetime of the S(1) dimer was ten times shorter than the corresponding lifetime in a bulk aqueous solution. The 6.4 ps and 0.85 ns components were ascribed to the decay of the S(1) monomer (as well as the recovery of the dimer in the ground state). For the 6.4 ps time constant, there is no corresponding component in the dynamics in bulk water, and it is ascribed to an interface-specific deactivation process. The 0.85 ns time constant was ascribed to the intrinsic lifetime of the S(1) monomer at the air/water interface, which is almost the same as the lifetime in bulk water. The present study clearly shows the feasibility and high potential of the TR-ESFG spectroscopy to investigate ultrafast dynamics at the interface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号