首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oscillator strengths and line widths of dipole-allowed transitions in (14)N(2) between 89.7 and 93.5 nm
Authors:Stark G  Lewis B R  Heays A N  Yoshino K  Smith P L  Ito K
Institution:Department of Physics, Wellesley College, Wellesley, MA 02481, USA. gstark@wellesley.edu
Abstract:Line oscillator strengths in the 20 electric dipole-allowed bands of (14)N(2) in the 89.7-93.5 nm (111480-106950 cm(-1)) region are reported from photoabsorption measurements at an instrumental resolution of approximately 6 mA (0.7 cm(-1)) full width at half maximum. The absorption spectrum comprises transitions to vibrational levels of the 3p sigma(u) c(4)' (1)Sigma(u)(+), 3p pi(u) c(3) (1)Pi(u), and 3s sigma(g) o(3) (1)Pi(u) Rydberg states and of the b' (1)Sigma(u)(+) and b (1)Pi(u) valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled Schrodinger-equation calculations. Most bands in this study are characterized by a strong J dependence of the band f values and display anomalous P-, Q-, and R-branch intensity patterns. Predissociation line widths, which are reported for 11 bands, also exhibit strong J dependences. The f value and line width patterns can inform current efforts to develop comprehensive spectroscopic models that incorporate rotational effects and predissociation mechanisms, and they are critical for the construction of realistic atmospheric radiative-transfer models.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号