首页 | 本学科首页   官方微博 | 高级检索  
     


Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework
Authors:Zhang Jie-Peng  Chen Xiao-Ming
Affiliation:MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China. zhangjp7@mail.sysu.edu.cn
Abstract:The porous metal azolate framework [Cu(etz)]infinity (MAF-2, Hetz = 3,5-diethyl-1,2,4-triazole) processes an NbO type cuprous triazolate scaffold and a CsCl type hydrophobic channel system, in which the large cavities are interconnected by small apertures with pendant ethyl groups. Since the ethyl-blocked apertures behave as thermoactivated IRIS stops for the guest molecules, the gas sorption behavior of MAF-2 can be controlled by temperature, in which N2 adsorption was observed at 195 K rather than 77 K. Single-crystal X-ray structural analysis revealed that the [Cu(etz)]infinity host framework is not altered upon N2 inclusion, confirming the occurrence of the so-called " kinetically controlled flexibility". By virtue of the kinetically controlled flexibility and hydrophobic pore surface, MAF-2 can adsorb large amounts of small organic molecules but excludes H2O. As demonstrated by single-crystal X-ray structural analyses, MAF-2 shrinks, expands, or distorts its framework to accommodate the hydrogen-bonded hexamers of MeOH, EtOH, or MeCN, respectively. Moreover, MAF-2 can also separate benzene and cyclohexane efficiently, as its flexible scaffold can distort to a certain degree so that benzene can diffuse through the distorted apertures but cyclohexane cannot. Moreover, the adsorption/desorption of these organic vapors induces reversible, multimode structural transformations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号