首页 | 本学科首页   官方微博 | 高级检索  
     检索      

LiCoO_2电池正极微结构模拟退火重构及传输物性预测
引用本文:吴伟,蒋方明,曾建邦.LiCoO_2电池正极微结构模拟退火重构及传输物性预测[J].物理学报,2014,63(4):48202-048202.
作者姓名:吴伟  蒋方明  曾建邦
作者单位:1. 中国科学院广州能源研究所, 先进能源系统实验室, 中国科学院可再生能源重点实验室, 广州 510640;2. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金青年科学基金(批准号:51206171)和中国科学院百人计划(批准号:FJ)资助的课题.
摘    要:采用实验或数值方法对多孔复合电极微结构进行重构和特征化不仅是锂离子电池介观尺度数值模型的重要组成部分,也是通过数值技术由底向上进行电极微结构虚拟设计与优化的基础.本文以某商用LiCoO2电池正极的孔隙率、电极组成材料的组分体积分数、活性材料颗粒粒径分布、相关函数等重要结构与统计信息作为输入参数,采用模拟退火法对其微结构进行了数值重建,得到了明确区分活性材料、固体添加物以及孔相(电解液)的微结构,其重要特性参数与实际电极一致.对重构电极的特征化分析,得到了电极内部各组分的连通性、孔径分布等特征信息.同时,采用D3Q15格子Boltzmann模型计算了重构电极的有效热导率以及电解液(或固相)的有效传输系数.与随机行走模拟或Bruggemann等经验公式相比,基于实际电极微结构细节信息的介观数值方法对多孔电极有效传输系数的预测更为准确可靠.

关 键 词:有效物性参数  锂离子电池介观模型  模拟退火法  格子Boltzmann方法
收稿时间:2013-09-05

Simulated annealing reconstruction of LiCoO2 cathode microstructure and prediction of its effective transport properties
Wu Wei,Jiang Fang-Ming,Zeng Jian-Bang.Simulated annealing reconstruction of LiCoO2 cathode microstructure and prediction of its effective transport properties[J].Acta Physica Sinica,2014,63(4):48202-048202.
Authors:Wu Wei  Jiang Fang-Ming  Zeng Jian-Bang
Institution:1. Key Laboratory of Renewable Energy of Chinese Academy of Sciences, Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Reconstruction and characterization of the porous composite electrode via experimental and numerical approaches is one of the most important ingredients of mesoscopic modeling. It is also the basis and prerequisite for bottom-to-up design and optimization of electrode microstructure. In the present work, a simulated annealing approach is employed to reconstruct the LiCoO2 cathode of a commercial Li-ion battery. Important statistical characteristic parameters of the real LiCoO2 cathode, such as porosity or component volume fraction, the real size distribution curve of LiCoO2 particles, which are taken from experimental data or extracted from the source materials used to fabricate the cathode, are used to regulate the reconstruction process. The reconstructed electrode evidently distinguishes the three individual phases: LiCoO2 as active material, pores or electrolyte, and additives. An extensive characterization is subsequently performed, which calculates some important structural and transport properties, including the geometrical connectivity of an individual phase, the specific surface area, etc. Particularly, a self-developed D3Q15 LB (lattice Boltzmann) model is utilized to calculate the effective thermal (or electric) conductivity and the effective species diffusivity in electrolyte (or solid) phase, and the tortuosity of an individual phase. The LB model predictions indicate that the effective transport coefficients are closely related to the micro-morphology in electrodes and the tortuosity values assessed by LBM are more reliable than those predicted by random walk simulation or the Bruggeman equation.
Keywords:effective physical parameters  mesoscopic modeling to lithium-ion battery  simulated annealing approach  lattice Boltzmann method
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号