首页 | 本学科首页   官方微博 | 高级检索  
     

混沌系统中参数估计的演化建模方法
引用本文:王柳,何文平,万仕全,廖乐健,何涛. 混沌系统中参数估计的演化建模方法[J]. 物理学报, 2014, 63(1): 19203-019203. DOI: 10.7498/aps.63.019203
作者姓名:王柳  何文平  万仕全  廖乐健  何涛
作者单位:1. 北京理工大学计算机学院, 北京 100081;2. 国家气候中心, 北京 100081;3. 扬州市气象局, 扬州 225009;4. 常州市环境监测中心站, 常州 213000
基金项目:全球变化研究国家重大科学研究计划(批准号:2012CB955902和2013CB329605)、国家自然科学基金(批准号:41275074;41005041和41175067)和公益性行业(气象)科研专项(批准号:GYHY201106015和GYHY201106016)资助的课题.
摘    要:借助于演化算法的自组织、自适应和自学习特征,本文提出了基于演化算法的参数辨识方案,并利用经典的Lorenz方程进行了数值仿真试验,研究了参数辨识方案对于单参数、双参数以及Lorenz系统三个参数完全未知时的性能.数值试验结果表明,新方法能够很好的对未知参数进行较为快速、准确的辨识,但存在对多个参数同时搜索时速度较慢的缺陷.鉴于此,将演化算法变异操作中的参数变异范围附加一种约束机理,试验结果表明,这一约束机理有效地提高了多参数估计中算法的收敛速度.

关 键 词:混沌系统  参数估计  演化算法
收稿时间:2013-05-15

Evolutionary modeling for parameter estimation for chaotic system
Wang Liu,He Wen-Ping,Wan Shi-Quan,Liao Le-Jian,He Tao. Evolutionary modeling for parameter estimation for chaotic system[J]. Acta Physica Sinica, 2014, 63(1): 19203-019203. DOI: 10.7498/aps.63.019203
Authors:Wang Liu  He Wen-Ping  Wan Shi-Quan  Liao Le-Jian  He Tao
Affiliation:1. National Climate Center, China Meteorological Administration, Beijing 100081, China;2. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;3. Yangzhou Meteorological office, Yangzhou 225009, China;4. Changzhou Environment Monitoring Center, Changzhou 213000, China
Abstract:On the basis of evolutionary algorithm, a novel method for parameter estimation of nonlinear dynamic equations is given in the present paper. Numerical tests indicate that the unknown parameters all can be estimated quickly and accurately whether the partial parameters are unknown or all parameters are unknown in the classic Lorenz equation. However, it is found that the convergence rate of the new algorithm is relatively slow when multiple unknown parameters are estimated simultaneously. To solve this problem, a corresponding improvement of measure is proposed, namely, a constraint mechanism is taken during the variation operation of evolutionary algorithm. The improvement is mainly based on the characteristic that the longer the running time of the evolutionary algorithm, the smaller the range of variation of the estimated parameters. Results indicate that the searching speed of the algorithm is greatly improved by using the improved estimation parameter project.
Keywords:chaotic system  parameter estimation  evolutionary algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号