首页 | 本学科首页   官方微博 | 高级检索  
     

基于SIFT特征匹配的电力设备外观异常检测方法
引用本文:李丽,李平,杨明,郑宝庆,王滨海. 基于SIFT特征匹配的电力设备外观异常检测方法[J]. 光学与光电技术, 2010, 8(6): 27-31
作者姓名:李丽  李平  杨明  郑宝庆  王滨海
作者单位:国家电网公司电力机器人重点实验室,山东,济南,250101;华北电网有限公司北京超高压公司,北京,102488
摘    要:基于电力设备巡检机器人平台,提出了一种电力设备外观异常检测方法。该方法使用SIFT特征点提取算法,进行特征匹配,使用基于RANSAC的方法求解单应矩阵进行配准。在经过配准后,对像素的差值使用Mean Shift分割算法提取异常区域。实验证明该方法对于光照有较高的鲁棒性,且受匹配误差和拍摄角度偏差、位置偏差影响较小,能够有效的将变化区域提取。

关 键 词:电力设备  异常检测  SIFT特征提取  单应矩阵  Mean Shift分割

Research on Abnormal Appearance Detection Approach of Electric Power Equipment
LI Li,LI Ping,YANG Ming,ZHENG Bao-qing,WANG Bin-hai. Research on Abnormal Appearance Detection Approach of Electric Power Equipment[J]. optics&optoelectronic technology, 2010, 8(6): 27-31
Authors:LI Li  LI Ping  YANG Ming  ZHENG Bao-qing  WANG Bin-hai
Affiliation:1 Electric Power Robotic Laboratory of State Grid corporation, Jinan 2050101; 2 Beijing Super High-voltage corporation of North China Grid company Limited, Beijing 102488 )
Abstract:Based on the electric power equipment automatic inspection robot, this paper presents an image processing approach for abnormal appearance of electric power equipment. Using camera images, we first automatically to find the robust feature points to match though SIFT method. Based on the basic match, we use RANSAC algorithms to find the Homography of the test image and the reference image. After the registration, we get the accurate location of the abnormal areas in the test image by Mean Shift segment method. The experimental results show that this method is efficient, and very robust to the angle deviation and position deviation, even the matching error.
Keywords:electric power equipment  abnormal appearance detection  SIFT  homography  Mean Shift segment
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号