首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的空谱联合探测高光谱影像目标探测算法
引用本文:王彩玲,王洪伟,胡炳樑,温佳,徐君,李湘眷. 一种新的空谱联合探测高光谱影像目标探测算法[J]. 光谱学与光谱分析, 2016, 36(4): 1163-1169. DOI: 10.3964/j.issn.1000-0593(2016)04-1163-07
作者姓名:王彩玲  王洪伟  胡炳樑  温佳  徐君  李湘眷
作者单位:1. 中国科学院西安光学精密机械研究所光学成像重点实验室,陕西 西安 710119
2. 西安石油大学计算机学院,陕西 西安 710065
3. 中国人民武装警察部队工程大学,陕西 西安 710086
4. 中国科学院软件研究所,北京 100080
5. 华东交通大学信息工程学院,江苏 南昌 330013
基金项目:国家自然科学基金项目(41301382,41301480,61401439),教育部人文社会科学研究青年基金项目(14YJCZH172),陕西省自然科学基础研究计划项目(2014JQ5181),西安石油大学创新基金项目(YS29031606)
摘    要:高光谱遥感影像不但具有高分辨率的空间信息还包含连续的光谱信息,因此在目标探测领域具有独特的应用优势。传统的高光谱遥感影像目标探测侧重于光谱信息的应用,形成了确定性算法和统计学算法。确定性算法通过计算目标光谱与待检测光谱之间的距离来查找目标,不能检测亚像素目标,而且容易受到噪声的影响;统计学目标检测计算背景统计特性,通过探测异常点来检测目标,可以检测亚像素目标和小目标,但容易受到目标尺寸的影响,不能很好的检测大目标。随着高光谱遥感影像的空间分辨率的增加,探测目标已有亚像素目标逐步转换为单像素及多像素目标,此时,在高光谱图像中,相同类别的地物在空间分布上呈现聚类特性, 因此,在利用高光谱遥感影像进行目标探测时,需要将其空间信息融入算法中。将空间特征引入传统目标探测算法。提出了一种新的空谱结合的高光谱目标探测算法,将传统的基于统计的目标探测算子与空域邻域聚类算法相结合,首先利用目标探测算子将影像划分为潜在目标区域与背景区域;通过计算潜在目标区域的质心,以质心为中心进行邻域聚类,剔除潜在目标区域中的背景区域,通过迭代计算获取最终目标探测结果。传统的基于统计的目标探测算子,将整个探测区域定义为背景区域,实现对背景区域的统计特征提取,而该方法将背景区域与潜在目标区域分离,剔除了目标区域对背景区域的统计干扰。将本算子与传统的约束能量最小化算子和自适应余弦探测算子进行分析比较可知,该算子的大目标探测性能优于传统的统计算子。

关 键 词:目标探测  空谱联合算子  高光谱影像处理  邻域聚类  统计学算子   
收稿时间:2014-12-17

A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection
WANG Cai-ling,WANG Hong-wei,HU Bing-liang,WEN Jia,XU Jun,LI Xiang-juan. A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1163-1169. DOI: 10.3964/j.issn.1000-0593(2016)04-1163-07
Authors:WANG Cai-ling  WANG Hong-wei  HU Bing-liang  WEN Jia  XU Jun  LI Xiang-juan
Affiliation:1. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Key Lab of Spectral Imaging, Xi’an 710119, China2. Xi’an Shiyou University, School of Computer Science, Xi’an 710065, China3. Engineering University of the Chinese People’s Armed Police Force,Xi’an 710086, China4. Institute of Software of Chinese Academy of Sciences, Beijing 100080, China5. School of Information Engineering, East China Jiaotong Univeristy, Nanchang 330013, China
Abstract:With high‐resolution spatial information and continuous spectrum information ,hyperspectral remote sensing image‐has a unique advantage in the field of target detection .Traditional hyperspectral remote sensing image target detection methods emphasis on using spectral information to determine deterministic algorithm and statistical algorithms .Deterministic algorithms find the target by calculating the distance between the target spectrum and detected spectrum however ,they are unable to detect sub‐pixel target and are easily affected by noise .Statistical methods which calculate background statistical characteristics to de‐tect abnormal point as target .It can detect subpixel target targets and small targets better thanbig size target ,.With the spatial resolution increasing ,subpixel target detection target has gradually grown to a single pixel and multi‐pixel target .At this point , hyperspectral image usually has large homogeneous regions where the neighboring pixels wihin the regions consist of the same type of materials and have a similar spectral characteristics ,therefore ,the spatial information should be needed to incorporate in‐to the algorithm for targe detection .This paper proposes an algorithm for hyperspectral target detection combined spectrum characteristics and spatial characteristics .The algorithm is based on traditional target detection operator and combined neighbor‐hood clustering statistics .Firstly ,the algorithm uses target detection operator to divided hyperspectral image into a potential tar‐get region and background region .Then ,it calculates the centroid of the potential target area .Finally ,as the centroid for neigh‐borhood clustering center to clust data in order to exclud background from potential target area ,through iterative calculation to obtain the final results of the target detection .The traditional statistics algorithms defines the total image as background area in order to extract background statistics features ,and the algorithm propsed devided the total image into background part and po‐tential target part ,which cut off the target interference for background statistics feature extraction .Compared with CEM opera‐tors and ACE operators ,the algorithm proposed outperforms than traditional operators in big target detection .
Keywords:Target detection  Spatial-spectral algorithm  Hyperspectral image processing  Neighborhood clustering  Statistical operators
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号