首页 | 本学科首页   官方微博 | 高级检索  
     


Recurrent neural network based hybrid model for reconstructing gene regulatory network
Affiliation:1. Department of Mathematics, Jamia Millia Islamia, New Delhi 110025, India;2. Jindal Global Business School, O. P. Jindal Global University, Haryana 131001, India;3. Department of Mathematics, PGDAV College, University of Delhi, New Delhi 110065, India;4. Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India;1. Jamia Millia Islamia, New Delhi, India;2. Technical University of Denmark, Denmark
Abstract:One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model.
Keywords:Recurrent neural network  Gene regulatory network model  Gene expression  Kalman filter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号