首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical investigations on the interactions of glucokinase regulatory protein with fructose phosphates
Affiliation:1. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., Lviv 79011, Ukraine;2. Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Lviv 79013, Ukraine;3. Faculty of Science, J. E. Purkinje University, Ústí nad Labem 400 96, Czech Republic
Abstract:Glucokinase (GK) plays a critical role in maintaining glucose homeostasis in the human liver and pancreas. In the liver, the activity of GK is modulated by the glucokinase regulatory protein (GKRP) which functions as a competitive inhibitor of glucose to bind to GK. Moreover, the inhibitory intensity of GKRP–GK is suppressed by fructose 1-phosphate (F1P), and reinforced by fructose 6-phosphate (F6P). Here, we employed a series of computational techniques to explore the interactions of fructose phosphates with GKRP. Calculation results reveal that F1P and F6P can bind to the same active site of GKRP with different binding modes, and electrostatic interaction provides a major driving force for the ligand binding. The presence of fructose phosphate severely influences the motions of protein and the conformational space, and the structural change of sugar phosphate influences its interactions with GKRP, leading to a large conformational rearrangement of loop2 in the SIS2 domain. In particular, the binding of F6P to GKRP facilitates the protruding loop2 contacting with GK to form the stable GK–GKRP complex. The conserved residues 179–184 of GKRP play a major role in the binding of phosphate group and maintaining the stability of GKRP. These results may provide deep insight into the regulatory mechanism of GKRP to the activity of GK.
Keywords:Glucokinase regulatory protein  Molecular docking  Essential dynamics analysis  Molecular dynamics simulations  Conformational changes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号