首页 | 本学科首页   官方微博 | 高级检索  
     

复杂结构自组织等离子体光子晶体光谱研究
引用本文:刘伟波,董丽芳,赵龙虎,王永杰,张新普. 复杂结构自组织等离子体光子晶体光谱研究[J]. 光谱学与光谱分析, 2015, 35(1): 48-51. DOI: 10.3964/j.issn.1000-0593(2015)01-0048-04
作者姓名:刘伟波  董丽芳  赵龙虎  王永杰  张新普
作者单位:1. 河北大学物理科学与技术学院,河北 保定 071002
2. 滨州学院光电工程系,山东 滨州 256603
基金项目:国家自然科学基金项目,博士点基金项目,河北省科技厅重点项目,河北省教育厅重点项目
摘    要:利用双水电极介质阻挡放电装置,在气体放电中产生了一种由放电丝自组织形成的复杂结构等离子体光子晶体。该晶体结构由许多四边形的晶胞组成,每个晶胞包括大点、两种不同的小点和线,分别对应粗等离子体柱、两种细等离子体柱和等离子体片。采用发射光谱法,对不同位置处的等离子体状态进行了研究,对比了其电子密度和分子振动温度。具体方法是通过氩原子696.54 nm(2P2→1S5)的发射谱线测量谱线展宽进而对比电子密度,通过氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算分子振动温度。结果发现:四种不同位置的等离子体具有不同的电子密度和分子振动温度,即它们各自处于不同的等离子体态。电子密度按照降序排列顺序依次为:中心粗等离子体柱四周的细等离子体柱、粗等离子体柱、边缘处的等离子体片、等离子体片交叉点处的细等离子体柱;分子振动温度的变化趋势与电子密度相反。由于等离子体电子密度不同,对光的折射率也不同,因此在该晶体结构中,粗等离子体柱、两种细等离子体柱以及等离子体片具有不同的折射率,它们和周围未放电的区域自组织形成具有五种折射率的复杂结构等离子体光子晶体。该等离子体光子晶体易于产生,具有结构多样、分析简单的优点,具有广泛的应用前景。

关 键 词:等离子体光子晶体  介质阻挡放电  发射光谱   
收稿时间:2013-12-20

Investigation on the Spectrum of Complex Self-Organized Plasma Photonic Crystal
LIU Wei-bo,DONG Li-fang,ZHAO Long-hu,WANG Yong-jie,ZHANG Xin-pu. Investigation on the Spectrum of Complex Self-Organized Plasma Photonic Crystal[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 48-51. DOI: 10.3964/j.issn.1000-0593(2015)01-0048-04
Authors:LIU Wei-bo  DONG Li-fang  ZHAO Long-hu  WANG Yong-jie  ZHANG Xin-pu
Affiliation:1. College of Physics Science and Technology, Hebei University, Baoding 071002, China2. Department of Opto-Electronic Engineering, Binzhou University, Binzhou 256603, China
Abstract:A complex plasma photonic crystal (PPC) was obtained by self-organization of filaments in air dielectric barrier discharge using two planar water electrodes. The PPC structure consists of many square sublattices, and each sublattice is composed of large spots, two kinds of small spots and lines, corresponding to thick plasma columns, two kinds of thin plasma columns, and plasma slices, respectively. By using the optical emission spectrum method, the electron densities and molecular vibration temperatures at different positions of the PPC were studied. The electron densities were compared by comparing the broadenings of Ar Ⅰ (2P2→1S5) spectrum line, and the molecular vibration temperatures were calculated by the spectrum line of nitrogen band of second positive system (C3ΠuB3Πg) . It was found that the electron densities and molecular vibration temperatures at different positions are both different, showing that the plasma states at different positions are different. The descending order of the electron density is: thin plasma columns around the thick plasma columns, thick plasma columns, plasma slices, and thin plasma columns at junction of plasma slices. The descending order of the molecular vibration temperature is: thin plasma columns at junction of plasma slices, plasma slices, thick plasma columns, and thin plasma columns around the thick plasma columns, which is opposite to that of the electron density. So, the electron densities and the molecular vibration temperatures in different positions of the PPC show the opposite changing trend. As the refractive index of plasma is dependent upon the electron density, the thick plasma columns, two kinds of thin plasma columns and plasma slices in this PPC have different refractive indexes. Together with the surrounding area where no discharges occur, in which the refractive index is also different from the discharging areas, the complex PPC can be seen as a self-organized periodic structure with five different refractive indexes. The PPC has the advantages of being obtained easily, having structural diversity, and being analyzed simply, which may lead to wide applications in many scientific and technical areas.
Keywords:Plasma photonic crystal  Dielectric barrier discharge  Optical emission spectra
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号