首页 | 本学科首页   官方微博 | 高级检索  
     


Acousto-mechanical and thermal properties of clotted blood
Authors:Nahirnyak Volodymyr M  Yoon Suk Wang  Holland Christy K
Affiliation:Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA.
Abstract:The efficacy of ultrasound-assisted thrombolysis as an adjunct treatment of ischemic stroke is being widely investigated. To determine the role of ultrasound hyperthermia in the process of blood clot disruption, the acousto-mechanical and thermal properties of clotted blood were measured in vitro, namely, density, speed of sound, frequency-dependent attenuation, specific heat, and thermal conductivity. The amplitude coefficient of attenuation of the clots was determined for 120 kHz, 1.0 MHz, and 3.5 MHz ultrasound at room temperature (20 +/- 2 degrees C). The attenuation coefficient ranged from 0.10 to 0.30 Np/cm in porcine clots and from 0.09 to 0.23 Np/cm in human clots. The experimentally determined values of specific heat and thermal conductivity for porcine clotted blood are (3.2 +/- 0.5) x 10(3) J/kg x K and 0.55 +/- 0.13 W/m x K, respectively, and for human clotted blood are (3.5 +/- 0.8) x 10(3) J/kg x K and 0.59 +/- 0.11 W/m x K, respectively. Measurements of the acousto-mechanical and thermal properties of clotted blood can be helpful in theoretical modeling of ultrasound hyperthermia in ultrasound-assisted thrombolysis and other high-intensity focused ultrasound applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号