首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative structure-property relationships in boron nitrides: the 15N- and 11B chemical shifts.
Authors:C M Marian  M Gastreich
Affiliation:Institut für Algorithmen und Wissenschaftliches Rechnen, GMD Informationstechnik GmbH, Sankt Augustin, Germany. christel.marian@gmd.de
Abstract:Nuclear Magnetic Resonance (NMR) chemical shifts(delta) for elements in solids may often be approached by ab initio cluster calculations. We employ this technique to investigate the influence of structural alterations on the 15N and 11B chemical shifts in boron nitrides--in both hexagonal and cubic modifications. Within a given class of connectivity, i.e., three- or fourfold coordinated nitrogen, for the first time, an almost linear correlation between the 15N chemical shift and N-B bond lengths could be established. Also, the 11B shifts in hexagonal boron nitride correlate with the B-N bond distance; however, the effect is less pronounced. For the value of the chemical shift (CS), the decisive property is the average bond length at the atom in focus. Variations of CS are predominantly caused by changes in the paramagnetic deshielding. Further, second-nearest neighbor effects on the shieldings at 15N nuclei are quantified by subtraction schemes. The present work is closely related to the verification of models for amorphous high-demand Si/B/N ceramics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号