首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An international round-robin study for the analysis of particulate semi-volatile organics by thermal desorption gas chromatography mass spectrometry
Authors:Gianni Caravaggio  Chris Hebbern  Luyi Ding  Sabit Cakmak
Institution:1. Natural Resources Canada, CanmetENERGY, Ottawa, ON K1A 1M1, Canada;2. Health Canada, Population Studies Division, Environmental Health Science &3. Research Bureau, Ottawa, ON K1A 0K9, Canada;4. Environment Canada, Air Quality Research Division, Ottawa, ON K1A 0H3, Canada
Abstract:Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) is becoming more commonly used for the quantification and identification of organic compounds in particulate matter (PM), including ambient and source PM such as diesel particulate matter (DPM). It has been proven as an alternative to the traditional solvent extraction (SE) method and liquid injection gas chromatograph mass spectrometry (LI-GC/MS). However, little information is available on how different types of TD-GC/MS systems compare to each other for analysis of real-world PM samples or to direct LI-GC/MS for analysis of PM components in a test solution. To address this, CanmetENERGY Characterization Laboratory initiated a round robin with the participation of 10 laboratories worldwide. Three sample types were analysed: (i) a test solution with a suite of pure compounds commonly found in PM, analysed by TD-GC/MS and LI-GC/MS; (ii) a DPM sample, analysed by TD-GC/MS and SE; and (iii) an ambient PM sample, analysed by TD-GC/MS. The first part of the study showed good overall performance and comparability between the different TD-GC/MS systems and LI-GC/MS method for the analysis of PM components in a test solution, with some variability of results due to system types and parameters used, concentration of calibration standards, and whether or not an internal standards was used. The analysis of the DPM sample showed greater variability between laboratories and methods as many PM components were present near the detection limit and matrix effects particularly affected the TD-GC/MS analysis of heavier n-alkanes. In the last part of the study, for the analysis of an ambient PM sample by TD-GC/MS, the analysis of variance showed good comparison between labs for polycyclic aromatic hydrocarbons (94% non-significant), but slightly lower for n-alkanes (68%) and biomarkers (57%).
Keywords:thermal desorption  round robin  gas chromatography mass spectrometry  TD-GC/MS  ambient particulate matter  solvent extraction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号