首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism and molecular-electronic structure correlations in a novel series of osmium(V) hydrazido complexes
Authors:Huynh M H  el-Samanody el-S  Demadis K D  White P S  Meyer T J
Institution:Department of Chemistry, Venable and Kenan Laboratories, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
Abstract:Reaction between the Os(VI) nitrido (OsVI identical to N+) complexes OsVI(L3)(Cl)2(N)]+ (L3 is 2,2':6',2"-terpyridine (tpy) or tris(1-pyrazolyl)methane (tpm)) and secondary amines (HN(CH2)4O = morpholine, HN(CH2)4CH2 = piperidine, and HN(C2H5)2 = diethylamine) gives Os(V)-hydrazido complexes, OsV(L3)(Cl)2(NNR2)]+ (NR2 = morpholide, piperidide, or diethylamide). They can be chemically or electrochemically oxidized to Os(VI) or reduced to Os(IV) and Os(III). The Os-N bond lengths and Os-N-N angles in the structures of these complexes are used to rationalize the bonding between the dianionic hydrazido ligand and Os. The rate law for formation of the Os(V) hydrazido complexes with morpholine as the base is first order in OsVI(L3)(Cl)2(N)]+ and second order in HN(CH2)4O with ktpy(25 degrees C, CH3CN) = (581 +/- 12) M-2 s-1 and ktpm(25 degrees C, CH3CN) = 2683 +/- 40 M-2 s-1. The proposed mechanism involves initial nucleophilic attack of the secondary amine on the Os(VI) nitrido group to give a protonated Os(IV)-hydrazido intermediate. It is subsequently deprotonated and then oxidized by OsVI identical to N+ to Os(V). The extensive redox chemistry for these complexes can be explained by invoking a generalized bonding model. It can also be used to assign absorption bands that appear in the electronic from the visible-near-infrared spectra including a series of d pi-->d pi interconfigurational bands at low energy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号