首页 | 本学科首页   官方微博 | 高级检索  
     


Symmetry of metal chelates
Authors:Perrin C L  Kim Y J
Affiliation:Department of Chemistry, University of California-San Diego, La Jolla, California 92093-0358, USA.
Abstract:Is a metal chelate symmetric, with the motion of the metal described by a single-well potential, or is it asymmetric, in a double-well potential? For hydrogen, this is the familiar question of the symmetry of a hydrogen bond. The molecular symmetry of MLn complexes (M = Li, Na, K, Al, Pd, Rh, Si, Sn, Ge, Sb, etc.; L is the anion of 3-hydroxy-2-phenylpropenal) in solution is now probed with the method of isotopic perturbation of equilibrium. A statistical mixture of 3-hydroxy-2-phenylpropenal-d0, -1-d, and -1,3-d2 was synthesized and converted to various metal complexes. Some complexes show two aldehydic signals, which means that their ligands are monodentate. For LiL, NaL, and KL, the 13C NMR isotope shifts, delta CH(D) - delta CH(H), for the aldehydic CH groups are small and negative, consistent with L- being a resonance hybrid. They are small and positive for AlL3, PdL2, Rh(CO)2L, SiX3L, SiL3+X-, (CF3)3GeL, SbCl4L, (EtO)4TaL, and (EtO)4NbL. The positive isotope shifts are unusual, but since they are small and temperature independent, they are intrinsic and indicate that these metal chelates are symmetric, as expected. Large positive isotope shifts, up to 400 ppb, are observed for Ph3GeL, Me3GeL, Ph2GeL2, Bu3SnL, and Ph4SbL. However, it is likely that these are monodentate complexes undergoing rapid metal migration, as judged from the X-ray crystal structures of Ph3SnL and Ph4SbL. NMR experiments indicate an intermolecular mechanism for exchange, which may be a biomolecular double metal transfer. It is remarkable that the isotope shifts in these five complexes demonstrate that they are asymmetric structures, even though they appear from other NMR evidence to be symmetric chelates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号