首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tuning of hydrogen bond strength using substituents on phenol and aniline: A possible ligand design strategy
Authors:Jóhannes Reynisson  Edward Mcdonald
Institution:(1) Cancer Research UK Centre For Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
Abstract:Using Density Functional Theory, the hydrogen bonding energy is calculated for the interaction of phenol and aniline with four model compounds representing the protein backbone and various amino acid site chain residues. The models are methanol, protonated methylamine, formaldehyde and acetate anion. The H-bond energies for the uncharged species are sim2.5kcalmol–1, whereas the charged model compounds bind with much higher energies of sim20kcalmol–1. The effect of para-substitution on the hydrogen bond energies is determined. Substitution has little effect on the H-bond energy of the neutral complexes (<2kcalmol–1), but for the positively and negatively charged systems substitution drastically alters the binding energies, e.g., 14.3kcalmol–1 for para-NO2. In the context of protein–ligand binding, relatively small changes in binding energy can cause large changes in affinity due to their exponential relationship. This means that for –NO2 an enormous change of 10 orders of magnitude for the affinity constant is predicted. These calculations allow prediction of H-bonds, using different substituents, in order to fine-tune and optimize ligand–protein interactions in the search for drug candidates.
Keywords:density functional theory(DFT)  Drug Design  Hydrogen Bonding energy  ligand–  protein interactions
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号