首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hybrid dynamical control based on consensus algorithms for current sharing in DC-bus microgrids
Institution:1. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile;2. Instituto de Matemática, Universidade Estadual de Campinas, Cx. Postal 6065, 13.081-970 Campinas-SP, Brazil;1. Energy Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 330, Newcastle NSW 2304, Australia;2. Centre for Complex Dynamic Systems and Control, The University of Newcastle, Callaghan, NSW 2308, Australia
Abstract:The main objective of this work is to propose a novel paradigm for the design of two layers of control laws for DC-bus microgrids in islanded mode. An intensive attention will be paid to the inner control level for the regulation of DC–DC electronic power converters, where the use of Hybrid Dynamical System theory will be crucial to formulate and exploit switching control signals in view of reducing the dissipated energy and improving system performance. Indeed, this recent theory is well suited for analysing power electronic converters, since they combine continuous (voltage and currents) and discrete (on–off state of switches) signals avoiding, in this way, the use of averaged models. Likewise, an outer control level for controlling DC-bus microgrids will be developed to provide a distributed strategy that makes the microgrid scalable and robust with respect to blackouts of sources and/or loads, as well as, to provide a balance in the system of charge of the batteries, following the principle of Multi-Agent System theory. In this distributed strategy, they are several crucial and innovative aspects to be regarded such as the different converter architectures, the hybrid and nonlinear nature of these converters. Stability properties are guaranteed by using singular perturbation analysis.
Keywords:Hybrid dynamical systems  Leader–follower consensus algorithms  Singular perturbation analysis  Microgrids
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号