首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Utilizing ion mobility to identify isobaric post-translational modifications: resolving acrolein and propionyl lysine adducts by TIMS mass spectrometry
Authors:Jose D Gomez  Mark E Ridgeway  Melvin A Park  Kristofer S Fritz
Institution:1.Skaggs School of Pharmacy and Pharmaceutical Sciences,University of Colorado Anschutz Medical Campus,Aurora,USA;2.Bruker Daltonics,Billerica,USA
Abstract:Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric – indistinguishable by mass spectrometry – and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS – time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号