首页 | 本学科首页   官方微博 | 高级检索  
     


Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation
Authors:N. A. Buchmann   C. Atkinson   M. C. Jeremy  J. Soria
Affiliation:(1) Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, 3800, Australia;(2) Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Abstract:Hemodynamic forces within the human carotid artery are well known to play a key role in the initiation and progression of vascular diseases such as atherosclerosis. The degree and extent of the disease largely depends on the prevailing three-dimensional flow structure and wall shear stress (WSS) distribution. This work presents tomographic PIV (Tomo-PIV) measurements of the flow structure and WSS in a physiologically accurate model of the human carotid artery bifurcation. The vascular geometry is reconstructed from patient-specific data and reproduced in a transparent flow phantom to demonstrate the feasibility of Tomo-PIV in a complex three-dimensional geometry. Tomographic reconstruction is performed with the multiplicative line-of-sight (MLOS) estimation and simultaneous multiplicative algebraic reconstruction (SMART) technique. The implemented methodology is validated by comparing the results with Stereo-PIV measurements in the same facility. Using a steady flow assumption, the measurement error and RMS uncertainty are directly inferred from the measured velocity field. It is shown that the measurement uncertainty increases for increasing light sheet thickness and increasing velocity gradients, which are largest near the vessel walls. For a typical volume depth of 6 mm (or 256 pixel), the analysis indicates that the velocity derived from 3D cross-correlation can be measured within ±2% of the maximum velocity (or ±0.2 pixel) near the center of the vessel and within ±5% (±0.6 pixel) near the vessel wall. The technique is then applied to acquire 3D-3C velocity field data at multiple axial locations within the carotid artery model, which are combined to yield the flow field and WSS in a volume of approximately 26 mm × 27 mm × 60 mm. Shear stress is computed from the velocity gradient tensor and a method for inferring the WSS distribution on the vessel wall is presented. The results indicate the presence of a complex and three-dimensional flow structure, with regions of flow separation and strong velocity gradients. The WSS distribution is markedly asymmetric confirming a complex swirling flow structure within the vessel. A comparison of the measured WSS with Stereo-PIV data returns an acceptable agreement with some differences in stress magnitude.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号