首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular interactions between pyrazine and n-propanol, chloroform, or tetrahydrofuran
Authors:Wang Rui  Li Qingzhong  Wu Ruiguang  Wu Guoshi  Yu Zhiwu
Affiliation:Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
Abstract:The molecular interactions of pyrazine (PZ) with n-propanol, chloroform, and tetrahydrofuran (THF) have been investigated by employing ultraviolet spectroscopy and quantum chemical calculation methods. A new quantity, excess absorption coefficient, was introduced to represent the strength of the interaction. It was found that the interaction decreased in the order: PZ-propanol>PZ-chloroform>PZ-THF. The Benesi-Hildebrand method indicated that the interaction stoichiometries of the PZ-chloroform and PZ-THF systems were both 1:1 and the equilibrium constants were determined to be 2.07 and 0.64M(-1), respectively. Using a nonlinear fitting method, we demonstrated that the PZ-propanol was a two-step 1:2 interaction pair and the equilibrium constants were determined to be 8.8 and 0.19M(-1). Quantum chemical calculations showed the existence of hydrogen-bonding interactions in all the three system: normal Ncdots, three dots, centeredH-O hydrogen bond in the PZ-propanol system, unconventional Ncdots, three dots, centeredH-C hydrogen bond in the PZ-chloroform, and weak N-C-Hcdots, three dots, centeredO hydrogen bond in the PZ-THF system. Methodologically, we pointed out that special care must be taken when the Benesi-Hildebrand method is used to evaluate 1:2 interactions.
Keywords:Pyrazine   Hydrogen bond   Ultraviolet spectroscopy   Quantum chemical calculations   Benesi–  Hildebrand method
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号