首页 | 本学科首页   官方微博 | 高级检索  
     


Cluster size-dependent mechanisms of the CO + NO reaction on small Pdn (n < or = 30) clusters on oxide surfaces
Authors:Wörz Anke S  Judai Ken  Abbet Stéphane  Heiz Ulrich
Affiliation:University of Ulm, Institute of Surface Chemistry and Catalysis, Albert-Einstein-Allee 47, D-89069 Ulm, Germany.
Abstract:The CO + NO reaction (2CO + 2NO --> N(2) + 2CO(2)) on small size-selected palladium clusters supported on thin MgO(100) films reveals distinct size effects in the size range Pd(n) with n < or = 30. Clusters up to the tetramer are inert, while larger clusters form CO(2) at around 300 K, and this main reaction mechanism involves adsorbed CO and an adsorbed oxygen atom, a reaction product from the dissociation of NO. In addition, clusters consisting of 20-30 atoms reveal a low-temperature mechanism observed at temperatures below 150 K; the corresponding reaction mechanism can be described as a direct reaction of CO with molecularly adsorbed NO. Interestingly, for all reactive cluster sizes, the reaction temperature of the main mechanism is at least 150 K lower than those for palladium single crystals and larger particles. This indicates that the energetics of the reaction on clusters are distinctly different from those on bulklike systems. In the presented one-cycle experiments, the reaction is inhibited when strongly adsorbed NO blocks the CO adsorption sites. In addition, the obtained results reveal the interaction of NO with the clusters to show differences as a function of size; on larger clusters, both molecularly bonded and dissociated NO coexist, while on small clusters, NO is efficiently dissociated, and hardly any molecularly bonded NO is detected. The desorption of N(2) occurs on the reactive clusters between 300 and 500 K.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号