首页 | 本学科首页   官方微博 | 高级检索  
     


Call routing and the ratcatcher
Authors:P. D. Seymour  R. Thomas
Affiliation:(1) Bellcore, 445 South St., 07960 Morristown, New Jersey, USA;(2) School of Mathematics, Georgia Institute of Technology, 30332 Atlanta, Georgia, USA
Abstract:Suppose we expect there to bep(ab) phone calls between locationsa andb, all choices ofa, b from some setL of locations. We wish to design a network to optimally handle these calls. More precisely, a ldquorouting treerdquo is a treeT with set of leavesL, in which every other vertex has valency 3. It has ldquocongestionrdquo <k if for every edgee ofT, there are fewer thank calls which will be routed alonge, that is, between locationa, b in different components ofT/e. Deciding if there is a routing tree with congestion <k is NP-hard, but if the pairsab, withp(ab)>0 form the edges of a planar graphG, there is an efficient, strongly polynomial algorithm.This is because the problem is equivalent to deciding if a ratcatcher can corner a rat loose in the walls of a house with floor planG, wherep(ab) is a thickness of the wallab. The ratcatcher carries a noisemaker of powerk, and the rat will not move through any wall in which the noise level is too high (determined by the total thickness of the intervening walls between this one and the noisemaker).It follows that branch-width is polynomially computable for planar graphs—that too is NP-hard for general graphs.This research was performed under a consulting agreement with Bellcore.
Keywords:05 C 78  05 C 85
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号