首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Residual-stress measurement using surface displacements around an indentation
Authors:John H Underwood
Institution:1. Materials Engineering Division, Benet Weapons Laboratory, 12189, Watervliet, NY
Abstract:An experimental method is described which can measure the direction and magnitude of residual and applied stress in metals. The method uses optical interference to measure the permanent surface deformation around a shallow spherical indentation in a polished area on the metal specimen. The deviation from circularly symmetrical surface deformations is measured at known values of applied stress in calibration specimens. This deviation from symmetry can then be used to determine the direction and magnitude of tensile residual stress in specimens of the same material. Determination of compressive residual stress is more limited. A model of the indentation process is offered which qualitatively describes experimental results in 4340 steel for both tensile and compressive stress. The model assumes that the deformation around an indentation os controlled by stresses analogous to those around a hole in an elastic plate. Various conditions are discussed which affect the indentation process and its use to measure stress, including (a) the rigidity of support of the indentor and specimen, (b) the size and depth of the indentation, (c) the uniaxial stress-strain behavior of the specimen material.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号