首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Inlet Dilution of Reactants on Premixed Combustion in a Recuperative Furnace
Authors:Pengfei Li  Jianchun Mi
Institution:1.State Key Laboratory of Turbulence and Complex Systems, Department of Energy and Resources Engineering, College of Engineering,Peking University,Beijing,China;2.College of Energy and Power Engineering,Changsha University of Science and Technology,Changsha,China
Abstract:This paper presents a numerical study by RANS modeling that investigates the effect of external dilution on the premixed combustion occurring in a recuperative furnace. Calculations are performed using the detailed GRI-Mech 3.0 mechanism to ensure the accuracy of the modeling. Results of the in-furnace flow, temperature, and concentrations of OH, O2, CO2 and NO x are provided. It is found that the external dilution with the inert gas CO2 plays a significant role in establishing the premixed MILD (Moderate or Intense Low-oxygen Dilution) combustion. Externally diluting the reactant mixture not only reduces the initial concentration of O2 but also ensures a stronger internal dilution by recirculation of more hot combustion products. Importantly, the latter effect is more significant for achieving the MILD regime. There is a critical mass fraction of the diluent CO2 present, below which MILD combustion cannot occur. While the traditional premixed flame produces much more NO x than the MILD combustion, the emission of NO x appears to result most from the thermal-NO route and least from the N2O route no matter which mode occurs. Moreover, the present simulation demonstrates that the MILD mode occurs over a wider range of initial reactant conditions for premixed combustion than for diffusion combustion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号