首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and Photoluminescence Behaviors of Nano-Structure Thin Film and Bulk Silica Gel Derived Glasses
Authors:Battisha  IK  Afify  HH  Badr  Y
Institution:(1) Solid State Physics Department, National Research Center (NRC), Cairo, Egypt;(2) National Institute of Laser Enhancement Sciences (NILES), Cairo University, Egypt
Abstract:Nano-structure bulk and thin film silica gel derived glasses were prepared by sol-gel technique. Both samples were derived from the same precursor and subjected to the same heat-treatment regime. Structural information about prepared samples are obtained by analyzing the XRD patterns and TEM micrographs. The bulk samples phase changes from amorphous to prop-crystoballite at higher temperature (1300°C) than that in the thin film (500°C). The crystallite size depends to a large extent on the heat-treatment temperature. Bulk sample heat treated at 1400°C was as small as 10.4 nm. Thin film samples show higher response to heat-treatment temperature than the bulk samples, where the film is denser, has smaller pores and seems more homogeneous at lower temperature than bulk sample as revealed by SEM. The observed Raman spectra for bulk and thin film samples are in accordance with that of the prop-crystoballite. The Raman peak intensity is higher for thin film than bulk samples. The photoluminescence PL measurements for bulk samples show a broad intense peak at 532 nm combined with three weak peaks at longer wavelength 587, 635 and 666 nm. The PL peak intensity shows a reasonable decrease with increasing the heat-treatment temperature while the peak position shifted slightly to a lower wavelength. While the thin film samples show a unique peak at wavelength = 523 nm. The appearance of PL bands are interpreted on the light of non-bridged oxygen hole center as well as the structure defects.
Keywords:sol-gel  thin film and bulk silica gel derived glasses  TEM  SEM  photoluminescence and Raman
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号