Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations |
| |
Authors: | Li Li Shao Jian-Li Duan Su-Qing Liang Jiu-Qing |
| |
Affiliation: | Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
| |
Abstract: | By molecular dynamics simulations employing an embedded atom method potential, we have investigated structural transformations in single crystal Al caused by uniaxial strain loading along the [001], [011] and [111] directions. We find that the structural transition is strongly dependent on the crystal orientations. The entire structure phase transition only occurs when loading along the [001] direction, and the increased amplitude of temperature for [001] loading is evidently lower than that for other orientations. The morphology evolutions of the structural transition for [011] and [111] loadings are analysed in detail. The results indicate that only 20% of atoms transit to the hcp phase for [011] and [111] loadings, and the appearance of the hcp phase is due to the partial dislocation moving forward on {111}fcc family. For [011] loading, the hcp phase grows to form laminar morphology in four planes, which belong to the {111}fcc family; while for [111] loading, the hcp phase grows into a laminar structure in three planes, which belong to the {111}fcc family except for the (111) plane. In addition, the phase transition is evaluated by using the radial distribution functions. |
| |
Keywords: | single crystal Al molecular dynamics simulations uniaxial compression phase transition |
本文献已被 维普 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|