首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spherical Model in a Random Field
Authors:A E Patrick
Institution:(1) Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia
Abstract:We investigate the properties of the Gibbs states and thermodynamic observables of the spherical model in a random field. We show that on the low-temperature critical line the magnetization of the model is not a self-averaging observable, but it self-averages conditionally. We also show that an arbitrarily weak homogeneous boundary field dominates over fluctuations of the random field once the model transits into a ferromagnetic phase. As a result, a homogeneous boundary field restores the conventional self-averaging of thermodynamic observables, like the magnetization and the susceptibility. We also investigate the effective field created at the sites of the lattice by the random field, and show that at the critical temperature of the spherical model the effective field undergoes a transition into a phase with long-range correlations ∼r 4−d .
Keywords:Critical fluctuations  Disordered spin systems  Gibbs states  Self-averaging
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号