首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty
Abstract:This article considers Markov chain computational methods for incorporating uncertainty about the dimension of a parameter when performing inference within a Bayesian setting. A general class of methods is proposed for performing such computations, based upon a product space representation of the problem which is similar to that of Carlin and Chib. It is shown that all of the existing algorithms for incorporation of model uncertainty into Markov chain Monte Carlo (MCMC) can be derived as special cases of this general class of methods. In particular, we show that the popular reversible jump method is obtained when a special form of Metropolis–Hastings (M–H) algorithm is applied to the product space. Furthermore, the Gibbs sampling method and the variable selection method are shown to derive straightforwardly from the general framework. We believe that these new relationships between methods, which were until now seen as diverse procedures, are an important aid to the understanding of MCMC model selection procedures and may assist in the future development of improved procedures. Our discussion also sheds some light upon the important issues of “pseudo-prior” selection in the case of the Carlin and Chib sampler and choice of proposal distribution in the case of reversible jump. Finally, we propose efficient reversible jump proposal schemes that take advantage of any analytic structure that may be present in the model. These proposal schemes are compared with a standard reversible jump scheme for the problem of model order uncertainty in autoregressive time series, demonstrating the improvements which can be achieved through careful choice of proposals.
Keywords:Bayes  Jump diffusion  Model selection  Reversible jump  Variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号